Faraday constant6.022141991747723  X 10+23 e mol-19.65 x 10+4 coulombs per mole.

Here is an excerpt from Matt William’s article on the Faraday constant in Universe Today

“When it comes to science, a system of measurements is an absolute necessity, at least where one wants to proceed from theory to practice. This is true even in the mysterious field of subatomic particles and electromagnetism. Recall the proton and the neutron, both of which have atomic mass which comes down to a standardized unit. But what of electrons and other subatomic particles that have virtually no mass? What of electrical charges when it comes to their relation to tiny units of mass? In this case, scientists needed to get creative, and one concept to emerge from their efforts is known today as the Faraday constant. This is the magnitude of electric charges per mole (an SI unit of measurement) of electrons.

“Named after Michael Faraday, an English chemist, physicist and natural philosopher who contributed to the fields of electromagnetism and electrochemistry, this constant is important in the fields of chemistry, physics, electronics, and is commonly symbolized by the italic uppercase letter F.”

Here are a table of constants by Jaszunski, Rizzo and Rudd that measure the tiniest powers of 10:

Table 9.2: A list of the universal constants in atomic units.

Hartree $ {{\hbar }^{2}} a_{0}^{-2} {m_e}^{-1}$
Permittivity of vacuum $ 0.07957747154594767 {e^{2}} {a_{0}} {m_e} {{\hbar }^{-2}}$
Permeability of vacuum $ 0.0006691762496807159{ {a_{0}}\ {m_e}}{{e^{-2}}}$
Impedance of vacuum $ 0.0917012364137738 \hbar e^{-2}$
Speed of light in vacuum $ 137.0359996287515 \hbar {a_{0}}^{-1} {m_e}^{-1}$
Proton rest mass $ 1836.152663302331 {m_e}$
Neutron rest mass $ 1838.685239091107 {m_e}$
Unified atomic mass constant $ 1822.888479031408 {m_e}$
Avogadro constant $ 6.022141990 \times {{10}^{23}}{{mol}^{-1}}$
Boltzmann constant $ 3.16681520371153 \times {{10}^{-6}} {{\hbar }^{2}} {K}^{-1} a_{0}^{-2}\ {m_e}^{-1}$
Faraday constant $ 6.022141991747723 \times {{10}^{23}}{\ e\ }{{mol}^{-1}}$
Molar gas constant $ 1.907101047994109 \times {{10}^{18}} {{\hbar }^{2}} {K}^{-1} {mol}^{-1} a_{0}^{-2}\ {m_e}^{-1}$
Fine structure constant $ 0.007297352522615556$
Rydberg constant $ 0.0005807048641344865{{a_{0}^{-1}}}$
Bohr Magneton $ 0.5 e\ \hbar {m_e}^{-1}$
Electron magnetic moment $ 0.5005801751848031{\ e\ \hbar }{{m_e}^{-1}}$
Landé g-factor for
the free electron $ 2.002320700739213$
Nuclear magneton $ 0.0002723085122457884{\ e\ \hbar }{{m_e}^{-1}}$
Proton magnetic moment $ 0.000760516627687762{ e\ \hbar }{{m_e}^{-1}}$
Proton magnetogiric ratio $ 0.001521031723472069{\ e}{{m_e}^{-1}}$
Magnetic moment of
protons in H$ _{2}$O $ 0.0007604965645{\ e\ \hbar }{{m_e}^{-1}}$
Proton resonance frequency
per field in H$ _{2}$O $ 0.001520992639504675{ e}{{m_e}^{-1}}$
Stefan-Boltzmann constant $ 8.80988087157682 \times {{10}^{-28}} {{\hbar }^{3}} {K}^{-4}\ a_{0}^{-6}\ m_{e}^{-2}$
Magnetic flux quantum $ {3.141592652725856 \hbar }{e^{-1}}$
Conductance quantum $ {0.3183098866547112 {e^{2}}}{\hbar^{-1} }$
Plank mass $ 2.38945532716683 \times {{10}^{22}} {m_{e}}$
Plank length $ 3.05398157366997 \times {{10}^{-25}} {a_{0}}$
Plank time $ 2.228598019457374 \times {{10}^{-27}} {{a_{0}^{2} m_{e}}{{{\hbar }^{-1}}}}$
ElectronVolt $ 0.03674932587122423 {{\hbar }^{2}} a_{0}^{-2} {m_e}^{-1}$
First radiation constant $ 741359.8822745807 {{\hbar }^{3}} a_{0}^{-2} m_{e}^{-2}$
Second radiation constant $ 2.718891138368016 \times {{10}^{8}} {K} {a_{0}}$
Quantum of circulation $ 3.141592653589793 \hbar {m_e}^{-1}$
This entry was posted in Uncategorized and tagged , , , , , . Bookmark the permalink. Post a comment or leave a trackback: Trackback URL.

Post a Comment

Your email is never published nor shared. Required fields are marked *


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

  • Countdown to Powers of Ten Day

    • 10/10/10 1820 days ago